
CS152 Lab 3
Cache Architecture Exploration

Version 0.2. 2022-03-08

1. Overview and Guide

For this lab, you will implement a few different cache eviction policies in a software cache simulator, and

measure their effectiveness on some small-scale benchmarks. You will again work with the rv32emulator

infrastructure you have worked with for Lab 1. The rv32emulator code has been updated, so please obtain

the newest code via “git pull”!

The cache relevant code is in the cachesim.cpp and cachesim.h files. At the top of cachesim.h, the

number of sets, ways, and size of a cache line (in words) are specified via #defines. In cachesim.cpp, the

relevant functions are cache_read, cache_write, and cache_flush. The cache_flush function chooses a

cache way to evict, flushes the data into memory, and then clears the valid bit of the flag. Right now, the

cache_flush function always chooses way 0 to evict, which is not very effective. Your task is to implement

LRU, and measure the performance.

Two small benchmarks are provided

• example_questions/sort.s implements quicksort on 1024 elements

• example_questions/graph.s implements single-source shortest path on a graph with 64 nodes

Performance can be measured via the number of words flushed from the cache, as seen in the following

figure:

“Cache flush words” displays the number of words flushed from the cache.

2. Implementation steps

2.1. Try a random replacement policy by changing the cache_flush function to select way =

rand()%CACHE_WAYS;

2.2. Implement LRU. This can be achieved in various different ways.

The most straightforward implementation would be augment cache_read and cache_write to move the

accessed <cache line, flag, tag> values to the last way, shifting everything down by one slot. This way, the

least recently used cache line will always be in way 0. The following figure illustrates this.

3. What to turn in

You will need to submit a single report, answering the questions listed in the following section.

Please submit in any major document format including .txt, .rtf, .doc, .docx, .odt, .abw, .wpd, or .pdf files.

4. Questions for the report

4.1. Evaluation of random replacement policy

4.1.1. Given a budget of 256 words in the cache (e.g., 256 sets, 1 way, 1 word per cache line, or 64 sets, 2

way, 2 words per cache line), what is the best set/way/line configuration for the two benchmarks? Is there

a difference, why?

Remember, the cache configuration parameters are in cachesim.h, and are given in logarithmic terms. E.g.,

CACHE_SETS_SZ 8 means the cache has 2^8 sets. Do not modify CACHE_SETS and similar defines directly,

as it may break the code.

4.2. Evaluation of LRU replacement policy

4.2.1. Same as with the random replacement policy, what is the best configuration, and is there a difference

between the two benchmarks, and why?

4.2.2. Is the LRU approach always superior to random?

4.3. Bonus: Pseudo-LRU replacement policy

4.3.1. Check out the “Bit-PLRU” approach in [https://en.wikipedia.org/wiki/Pseudo-LRU]. Using one or

more bits in the flag, implement the Bit-PLRU policy. How well does the Bit-PLRU do, compared to LRU?

Why would be use one or the other?

https://en.wikipedia.org/wiki/Pseudo-LRU

